杰网资源 Design By www.escxy.com
公共的抽象基类
import numpy as np
from abc import ABCMeta, abstractmethod
class LinearModel(metaclass=ABCMeta):
"""
Abstract base class of Linear Model.
"""
def __init__(self):
# Before fit or predict, please transform samples' mean to 0, var to 1.
self.scaler = StandardScaler()
@abstractmethod
def fit(self, X, y):
"""fit func"""
def predict(self, X):
# before predict, you must run fit func.
if not hasattr(self, 'coef_'):
raise Exception('Please run `fit` before predict')
X = self.scaler.transform(X)
X = np.c_[np.ones(X.shape[0]), X]
# `x @ y` == `np.dot(x, y)`
return X @ self.coef_
Linear Regression
class LinearRegression(LinearModel): """ Linear Regression. """ def __init__(self): super().__init__() def fit(self, X, y): """ :param X_: shape = (n_samples + 1, n_features) :param y: shape = (n_samples]) :return: self """ self.scaler.fit(X) X = self.scaler.transform(X) X = np.c_[np.ones(X.shape[0]), X] self.coef_ = np.linalg.inv(X.T @ X) @ X.T @ y return self
Lasso
class Lasso(LinearModel):
"""
Lasso Regression, training by Coordinate Descent.
cost = ||X @ coef_||^2 + alpha * ||coef_||_1
"""
def __init__(self, alpha=1.0, n_iter=1000, e=0.1):
self.alpha = alpha
self.n_iter = n_iter
self.e = e
super().__init__()
def fit(self, X, y):
self.scaler.fit(X)
X = self.scaler.transform(X)
X = np.c_[np.ones(X.shape[0]), X]
self.coef_ = np.zeros(X.shape[1])
for _ in range(self.n_iter):
z = np.sum(X * X, axis=0)
tmp = np.zeros(X.shape[1])
for k in range(X.shape[1]):
wk = self.coef_[k]
self.coef_[k] = 0
p_k = X[:, k] @ (y - X @ self.coef_)
if p_k < -self.alpha / 2:
w_k = (p_k + self.alpha / 2) / z[k]
elif p_k > self.alpha / 2:
w_k = (p_k - self.alpha / 2) / z[k]
else:
w_k = 0
tmp[k] = w_k
self.coef_[k] = wk
if np.linalg.norm(self.coef_ - tmp) < self.e:
break
self.coef_ = tmp
return self
Ridge
class Ridge(LinearModel): """ Ridge Regression. """ def __init__(self, alpha=1.0): self.alpha = alpha super().__init__() def fit(self, X, y): """ :param X_: shape = (n_samples + 1, n_features) :param y: shape = (n_samples]) :return: self """ self.scaler.fit(X) X = self.scaler.transform(X) X = np.c_[np.ones(X.shape[0]), X] self.coef_ = np.linalg.inv( X.T @ X + self.alpha * np.eye(X.shape[1])) @ X.T @ y return self
测试代码
import matplotlib.pyplot as plt
import numpy as np
def gen_reg_data():
X = np.arange(0, 45, 0.1)
X = X + np.random.random(size=X.shape[0]) * 20
y = 2 * X + np.random.random(size=X.shape[0]) * 20 + 10
return X, y
def test_linear_regression():
clf = LinearRegression()
X, y = gen_reg_data()
clf.fit(X, y)
plt.plot(X, y, '.')
X_axis = np.arange(-5, 75, 0.1)
plt.plot(X_axis, clf.predict(X_axis))
plt.title("Linear Regression")
plt.show()
def test_lasso():
clf = Lasso()
X, y = gen_reg_data()
clf.fit(X, y)
plt.plot(X, y, '.')
X_axis = np.arange(-5, 75, 0.1)
plt.plot(X_axis, clf.predict(X_axis))
plt.title("Lasso")
plt.show()
def test_ridge():
clf = Ridge()
X, y = gen_reg_data()
clf.fit(X, y)
plt.plot(X, y, '.')
X_axis = np.arange(-5, 75, 0.1)
plt.plot(X_axis, clf.predict(X_axis))
plt.title("Ridge")
plt.show()
测试效果
更多机器学习代码,请访问 https://github.com/WiseDoge/plume
以上就是Python 实现 3 种回归模型(Linear Regression,Lasso,Ridge)的示例的详细内容,更多关于Python 实现 回归模型的资料请关注其它相关文章!
杰网资源 Design By www.escxy.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
杰网资源 Design By www.escxy.com
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。






